Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships

Identifieur interne : 000103 ( PascalFrancis/Corpus ); précédent : 000102; suivant : 000104

Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships

Auteurs : MEIYUN LIN ; Taikan Oki ; Magnus Bengtsson ; Shinjiro Kanae ; Tracey Holloway ; David G. Streets

Source :

RBID : Pascal:08-0485900

Descripteurs français

English descriptors

Abstract

Region-to-grid source-receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO2, NOx, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10-40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 42
A06       @2 24
A08 01  1  ENG  @1 Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships
A11 01  1    @1 MEIYUN LIN
A11 02  1    @1 OKI (Taikan)
A11 03  1    @1 BENGTSSON (Magnus)
A11 04  1    @1 KANAE (Shinjiro)
A11 05  1    @1 HOLLOWAY (Tracey)
A11 06  1    @1 STREETS (David G.)
A14 01      @1 Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba @2 Meguro-ku, Tokyo 153-8505 @3 JPN @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 Institute for Global Environmental Strategies @2 Kanagawa @3 JPN @Z 3 aut.
A14 03      @1 Center for Sustainability and the Global Environment, University of Wisconsin-Madison @2 WI @3 USA @Z 5 aut.
A14 04      @1 Argonne National Laboratory @2 Argonne, IL @3 USA @Z 6 aut.
A20       @1 5956-5967
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000196263660020
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 08-0485900
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Region-to-grid source-receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO2, NOx, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10-40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.
C02 01  X    @0 001D16C02
C02 02  X    @0 001D16C03
C03 01  X  FRE  @0 Troposphère @5 01
C03 01  X  ENG  @0 Troposphere @5 01
C03 01  X  SPA  @0 Troposfera @5 01
C03 02  X  FRE  @0 Pollution air @5 02
C03 02  X  ENG  @0 Air pollution @5 02
C03 02  X  SPA  @0 Contaminación aire @5 02
C03 03  X  FRE  @0 Devenir polluant @5 03
C03 03  X  ENG  @0 Pollutant behavior @5 03
C03 03  X  SPA  @0 Evolución contaminante @5 03
C03 04  X  FRE  @0 Retombée atmosphérique @5 04
C03 04  X  ENG  @0 Atmospheric fallout @5 04
C03 04  X  SPA  @0 Recaída atmosférica @5 04
C03 05  X  FRE  @0 Retombée humide @5 05
C03 05  X  ENG  @0 Wet deposition @5 05
C03 05  X  SPA  @0 Recaída húmeda @5 05
C03 06  X  FRE  @0 Précipitation acide @5 06
C03 06  X  ENG  @0 Acid precipitation @5 06
C03 06  X  SPA  @0 Precipitación ácida @5 06
C03 07  X  FRE  @0 Transport polluant grande distance @5 07
C03 07  X  ENG  @0 Long range pollutant transport @5 07
C03 07  X  SPA  @0 Transporte contaminante gran distancia @5 07
C03 08  X  FRE  @0 Dioxyde de soufre @2 NK @2 FX @5 08
C03 08  X  ENG  @0 Sulfur dioxide @2 NK @2 FX @5 08
C03 08  X  SPA  @0 Dióxido sulfúrico @2 NK @2 FX @5 08
C03 09  X  FRE  @0 Dioxyde d'azote @2 NK @2 FX @5 09
C03 09  X  ENG  @0 Nitrogen dioxide @2 NK @2 FX @5 09
C03 09  X  SPA  @0 Nitrógeno dióxido @2 NK @2 FX @5 09
C03 10  X  FRE  @0 Modèle prévision @5 10
C03 10  X  ENG  @0 Forecast model @5 10
C03 10  X  SPA  @0 Modelo previsión @5 10
C03 11  X  FRE  @0 Relation source puits @5 11
C03 11  X  ENG  @0 Source sink relationship @5 11
C03 11  X  SPA  @0 Relación fuente sumidero @5 11
C03 12  X  FRE  @0 Echelon régional @5 12
C03 12  X  ENG  @0 Regional scope @5 12
C03 12  X  SPA  @0 Escala regional @5 12
C03 13  X  FRE  @0 Répartition spatiale @5 13
C03 13  X  ENG  @0 Spatial distribution @5 13
C03 13  X  SPA  @0 Distribución espacial @5 13
C03 14  X  FRE  @0 Variation saisonnière @5 14
C03 14  X  ENG  @0 Seasonal variation @5 14
C03 14  X  SPA  @0 Variación estacional @5 14
C03 15  X  FRE  @0 Equation Euler @5 15
C03 15  X  ENG  @0 Euler equation @5 15
C03 15  X  SPA  @0 Ecuación Euler @5 15
C03 16  X  FRE  @0 Modèle Lagrange @5 16
C03 16  X  ENG  @0 Lagrangian model @5 16
C03 16  X  SPA  @0 Modelo Lagrange @5 16
C03 17  X  FRE  @0 Asie @2 NG @5 31
C03 17  X  ENG  @0 Asia @2 NG @5 31
C03 17  X  SPA  @0 Asia @2 NG @5 31
N21       @1 316

Format Inist (serveur)

NO : PASCAL 08-0485900 INIST
ET : Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships
AU : MEIYUN LIN; OKI (Taikan); BENGTSSON (Magnus); KANAE (Shinjiro); HOLLOWAY (Tracey); STREETS (David G.)
AF : Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba/Meguro-ku, Tokyo 153-8505/Japon (1 aut., 2 aut., 4 aut.); Institute for Global Environmental Strategies/Kanagawa/Japon (3 aut.); Center for Sustainability and the Global Environment, University of Wisconsin-Madison/WI/Etats-Unis (5 aut.); Argonne National Laboratory/Argonne, IL/Etats-Unis (6 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2008; Vol. 42; No. 24; Pp. 5956-5967; Bibl. 3/4 p.
LA : Anglais
EA : Region-to-grid source-receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO2, NOx, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10-40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.
CC : 001D16C02; 001D16C03
FD : Troposphère; Pollution air; Devenir polluant; Retombée atmosphérique; Retombée humide; Précipitation acide; Transport polluant grande distance; Dioxyde de soufre; Dioxyde d'azote; Modèle prévision; Relation source puits; Echelon régional; Répartition spatiale; Variation saisonnière; Equation Euler; Modèle Lagrange; Asie
ED : Troposphere; Air pollution; Pollutant behavior; Atmospheric fallout; Wet deposition; Acid precipitation; Long range pollutant transport; Sulfur dioxide; Nitrogen dioxide; Forecast model; Source sink relationship; Regional scope; Spatial distribution; Seasonal variation; Euler equation; Lagrangian model; Asia
SD : Troposfera; Contaminación aire; Evolución contaminante; Recaída atmosférica; Recaída húmeda; Precipitación ácida; Transporte contaminante gran distancia; Dióxido sulfúrico; Nitrógeno dióxido; Modelo previsión; Relación fuente sumidero; Escala regional; Distribución espacial; Variación estacional; Ecuación Euler; Modelo Lagrange; Asia
LO : INIST-8940B.354000196263660020
ID : 08-0485900

Links to Exploration step

Pascal:08-0485900

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships</title>
<author>
<name sortKey="Meiyun Lin" sort="Meiyun Lin" uniqKey="Meiyun Lin" last="Meiyun Lin">MEIYUN LIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Oki, Taikan" sort="Oki, Taikan" uniqKey="Oki T" first="Taikan" last="Oki">Taikan Oki</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bengtsson, Magnus" sort="Bengtsson, Magnus" uniqKey="Bengtsson M" first="Magnus" last="Bengtsson">Magnus Bengtsson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute for Global Environmental Strategies</s1>
<s2>Kanagawa</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kanae, Shinjiro" sort="Kanae, Shinjiro" uniqKey="Kanae S" first="Shinjiro" last="Kanae">Shinjiro Kanae</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holloway, Tracey" sort="Holloway, Tracey" uniqKey="Holloway T" first="Tracey" last="Holloway">Tracey Holloway</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Center for Sustainability and the Global Environment, University of Wisconsin-Madison</s1>
<s2>WI</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Streets, David G" sort="Streets, David G" uniqKey="Streets D" first="David G." last="Streets">David G. Streets</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Argonne National Laboratory</s1>
<s2>Argonne, IL</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0485900</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0485900 INIST</idno>
<idno type="RBID">Pascal:08-0485900</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000103</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships</title>
<author>
<name sortKey="Meiyun Lin" sort="Meiyun Lin" uniqKey="Meiyun Lin" last="Meiyun Lin">MEIYUN LIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Oki, Taikan" sort="Oki, Taikan" uniqKey="Oki T" first="Taikan" last="Oki">Taikan Oki</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bengtsson, Magnus" sort="Bengtsson, Magnus" uniqKey="Bengtsson M" first="Magnus" last="Bengtsson">Magnus Bengtsson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute for Global Environmental Strategies</s1>
<s2>Kanagawa</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kanae, Shinjiro" sort="Kanae, Shinjiro" uniqKey="Kanae S" first="Shinjiro" last="Kanae">Shinjiro Kanae</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holloway, Tracey" sort="Holloway, Tracey" uniqKey="Holloway T" first="Tracey" last="Holloway">Tracey Holloway</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Center for Sustainability and the Global Environment, University of Wisconsin-Madison</s1>
<s2>WI</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Streets, David G" sort="Streets, David G" uniqKey="Streets D" first="David G." last="Streets">David G. Streets</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Argonne National Laboratory</s1>
<s2>Argonne, IL</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acid precipitation</term>
<term>Air pollution</term>
<term>Asia</term>
<term>Atmospheric fallout</term>
<term>Euler equation</term>
<term>Forecast model</term>
<term>Lagrangian model</term>
<term>Long range pollutant transport</term>
<term>Nitrogen dioxide</term>
<term>Pollutant behavior</term>
<term>Regional scope</term>
<term>Seasonal variation</term>
<term>Source sink relationship</term>
<term>Spatial distribution</term>
<term>Sulfur dioxide</term>
<term>Troposphere</term>
<term>Wet deposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Pollution air</term>
<term>Devenir polluant</term>
<term>Retombée atmosphérique</term>
<term>Retombée humide</term>
<term>Précipitation acide</term>
<term>Transport polluant grande distance</term>
<term>Dioxyde de soufre</term>
<term>Dioxyde d'azote</term>
<term>Modèle prévision</term>
<term>Relation source puits</term>
<term>Echelon régional</term>
<term>Répartition spatiale</term>
<term>Variation saisonnière</term>
<term>Equation Euler</term>
<term>Modèle Lagrange</term>
<term>Asie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Region-to-grid source-receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO
<sub>2</sub>
, NO
<sub>x</sub>
, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10-40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MEIYUN LIN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OKI (Taikan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BENGTSSON (Magnus)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KANAE (Shinjiro)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HOLLOWAY (Tracey)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STREETS (David G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Global Environmental Strategies</s1>
<s2>Kanagawa</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Center for Sustainability and the Global Environment, University of Wisconsin-Madison</s1>
<s2>WI</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Argonne National Laboratory</s1>
<s2>Argonne, IL</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>5956-5967</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000196263660020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0485900</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Region-to-grid source-receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO
<sub>2</sub>
, NO
<sub>x</sub>
, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10-40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D16C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Devenir polluant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Pollutant behavior</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Evolución contaminante</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Retombée atmosphérique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Atmospheric fallout</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recaída atmosférica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Retombée humide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Wet deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Recaída húmeda</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Précipitation acide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Acid precipitation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Precipitación ácida</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Transport polluant grande distance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Long range pollutant transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Transporte contaminante gran distancia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dioxyde de soufre</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Sulfur dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dióxido sulfúrico</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dioxyde d'azote</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Nitrogen dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Nitrógeno dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Relation source puits</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Source sink relationship</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Relación fuente sumidero</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Echelon régional</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Regional scope</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Escala regional</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Répartition spatiale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Spatial distribution</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Distribución espacial</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Variation saisonnière</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Seasonal variation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Variación estacional</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Equation Euler</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Euler equation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Ecuación Euler</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modèle Lagrange</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Lagrangian model</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelo Lagrange</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fN21>
<s1>316</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 08-0485900 INIST</NO>
<ET>Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships</ET>
<AU>MEIYUN LIN; OKI (Taikan); BENGTSSON (Magnus); KANAE (Shinjiro); HOLLOWAY (Tracey); STREETS (David G.)</AU>
<AF>Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba/Meguro-ku, Tokyo 153-8505/Japon (1 aut., 2 aut., 4 aut.); Institute for Global Environmental Strategies/Kanagawa/Japon (3 aut.); Center for Sustainability and the Global Environment, University of Wisconsin-Madison/WI/Etats-Unis (5 aut.); Argonne National Laboratory/Argonne, IL/Etats-Unis (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2008; Vol. 42; No. 24; Pp. 5956-5967; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Region-to-grid source-receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO
<sub>2</sub>
, NO
<sub>x</sub>
, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10-40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.</EA>
<CC>001D16C02; 001D16C03</CC>
<FD>Troposphère; Pollution air; Devenir polluant; Retombée atmosphérique; Retombée humide; Précipitation acide; Transport polluant grande distance; Dioxyde de soufre; Dioxyde d'azote; Modèle prévision; Relation source puits; Echelon régional; Répartition spatiale; Variation saisonnière; Equation Euler; Modèle Lagrange; Asie</FD>
<ED>Troposphere; Air pollution; Pollutant behavior; Atmospheric fallout; Wet deposition; Acid precipitation; Long range pollutant transport; Sulfur dioxide; Nitrogen dioxide; Forecast model; Source sink relationship; Regional scope; Spatial distribution; Seasonal variation; Euler equation; Lagrangian model; Asia</ED>
<SD>Troposfera; Contaminación aire; Evolución contaminante; Recaída atmosférica; Recaída húmeda; Precipitación ácida; Transporte contaminante gran distancia; Dióxido sulfúrico; Nitrógeno dióxido; Modelo previsión; Relación fuente sumidero; Escala regional; Distribución espacial; Variación estacional; Ecuación Euler; Modelo Lagrange; Asia</SD>
<LO>INIST-8940B.354000196263660020</LO>
<ID>08-0485900</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0485900
   |texte=   Long-range transport of acidifying substances in East Asia-Part II Source-receptor relationships
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023